The third kind of Darboux transformation and multisoliton solutions for generalized Broer–Kaup equations
نویسندگان
چکیده
In this paper, the third kind of Darboux transformation of generalized Broer–Kaup equations is derived from the corresponding spectral problem. By virtue of this Darboux transformation, new 2N -soliton solutions with parameters of the generalized Broer–Kaup equations are obtained. Although 2N is an even number, it is graphically shown that in the cases of N= 1 and N = 2 the obtained 2N -soliton solutions can degenerate into M -soliton solutions for any positive integer M less than 2N .
منابع مشابه
Explicit exact solutions for variable coefficient Broer-Kaup equations
Based on symbolic manipulation program Maple and using Riccati equation mapping method several explicit exact solutions including kink, soliton-like, periodic and rational solutions are obtained for (2+1)-dimensional variable coefficient Broer-Kaup system in quite a straightforward manner. The known solutions of Riccati equation are used to construct new solutions for variable coefficient Broer...
متن کاملSolitary Wave solutions of the BK equation and ALWW system by using the first integral method
Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.
متن کاملExact and Explicit Solutions of Whitham-Broer-Kaup Equations in Shallow Water
In this paper, a simple direct method is presented to find equivalence transformation of a nonlinear WhithamBroer-Kaup equations. Applying this equivalence transformation, we can obtain the symmetry group theorem of the Whitham-Broer-Kaup equations and then derive series of new exact and explicit solutions of the Whitham-Broer-Kaup equations according to solutions of the previous references.
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملNegaton and Positon solutions of the soliton equation with self-consistent sources
The KdV equation with self-consistent sources (KdVES) is used as a model to illustrate the method. A generalized binary Darboux transformation (GBDT) with an arbitrary time-dependent function for the KdVES as well as the formula for N -times repeated GBDT are presented. This GBDT provides non-auto-Bäcklund transformation between two KdV equations with different degrees of sources and enable us ...
متن کامل